672 research outputs found

    End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss

    Full text link
    Cross-modality retrieval encompasses retrieval tasks where the fetched items are of a different type than the search query, e.g., retrieving pictures relevant to a given text query. The state-of-the-art approach to cross-modality retrieval relies on learning a joint embedding space of the two modalities, where items from either modality are retrieved using nearest-neighbor search. In this work, we introduce a neural network layer based on Canonical Correlation Analysis (CCA) that learns better embedding spaces by analytically computing projections that maximize correlation. In contrast to previous approaches, the CCA Layer (CCAL) allows us to combine existing objectives for embedding space learning, such as pairwise ranking losses, with the optimal projections of CCA. We show the effectiveness of our approach for cross-modality retrieval on three different scenarios (text-to-image, audio-sheet-music and zero-shot retrieval), surpassing both Deep CCA and a multi-view network using freely learned projections optimized by a pairwise ranking loss, especially when little training data is available (the code for all three methods is released at: https://github.com/CPJKU/cca_layer).Comment: Preliminary version of a paper published in the International Journal of Multimedia Information Retrieva

    Reinforcement Learning Based Power Grid Day-Ahead Planning and AI-Assisted Control

    Full text link
    The ongoing transition to renewable energy is increasing the share of fluctuating power sources like wind and solar, raising power grid volatility and making grid operation increasingly complex and costly. In our prior work, we have introduced a congestion management approach consisting of a redispatching optimizer combined with a machine learning-based topology optimization agent. Compared to a typical redispatching-only agent, it was able to keep a simulated grid in operation longer while at the same time reducing operational cost. Our approach also ranked 1st in the L2RPN 2022 competition initiated by RTE, Europe's largest grid operator. The aim of this paper is to bring this promising technology closer to the real world of power grid operation. We deploy RL-based agents in two settings resembling established workflows, AI-assisted day-ahead planning and realtime control, in an attempt to show the benefits and caveats of this new technology. We then analyse congestion, redispatching and switching profiles, and elementary sensitivity analysis providing a glimpse of operation robustness. While there is still a long way to a real control room, we believe that this paper and the associated prototypes help to narrow the gap and pave the way for a safe deployment of RL agents in tomorrow's power grids

    Learning Audio–Sheet Music Correspondences for Cross-Modal Retrieval and Piece Identification

    Get PDF
    This work addresses the problem of matching musical audio directly to sheet music, without any higher-level abstract representation. We propose a method that learns joint embedding spaces for short excerpts of audio and their respective counterparts in sheet music images, using multimodal convolutional neural networks. Given the learned representations, we show how to utilize them for two sheet-music-related tasks: (1) piece/score identification from audio queries and (2) retrieving relevant performances given a score as a search query. All retrieval models are trained and evaluated on a new, large scale multimodal audio–sheet music dataset which is made publicly available along with this article. The dataset comprises 479 precisely annotated solo piano pieces by 53 composers, for a total of 1,129 pages of music and about 15 hours of aligned audio, which was synthesized from these scores. Going beyond this synthetic training data, we carry out first retrieval experiments using scans of real sheet music of high complexity (e.g., nearly the complete solo piano works by Frederic Chopin) and commercial recordings by famous concert pianists. Our results suggest that the proposed method, in combination with the large-scale dataset, yields retrieval models that successfully generalize to data way beyond the synthetic training data used for model building

    Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution

    Full text link
    Reinforcement Learning algorithms require a large number of samples to solve complex tasks with sparse and delayed rewards. Complex tasks can often be hierarchically decomposed into sub-tasks. A step in the Q-function can be associated with solving a sub-task, where the expectation of the return increases. RUDDER has been introduced to identify these steps and then redistribute reward to them, thus immediately giving reward if sub-tasks are solved. Since the problem of delayed rewards is mitigated, learning is considerably sped up. However, for complex tasks, current exploration strategies as deployed in RUDDER struggle with discovering episodes with high rewards. Therefore, we assume that episodes with high rewards are given as demonstrations and do not have to be discovered by exploration. Typically the number of demonstrations is small and RUDDER's LSTM model as a deep learning method does not learn well. Hence, we introduce Align-RUDDER, which is RUDDER with two major modifications. First, Align-RUDDER assumes that episodes with high rewards are given as demonstrations, replacing RUDDER's safe exploration and lessons replay buffer. Second, we replace RUDDER's LSTM model by a profile model that is obtained from multiple sequence alignment of demonstrations. Profile models can be constructed from as few as two demonstrations as known from bioinformatics. Align-RUDDER inherits the concept of reward redistribution, which considerably reduces the delay of rewards, thus speeding up learning. Align-RUDDER outperforms competitors on complex artificial tasks with delayed reward and few demonstrations. On the MineCraft ObtainDiamond task, Align-RUDDER is able to mine a diamond, though not frequently. Github: https://github.com/ml-jku/align-rudder, YouTube: https://youtu.be/HO-_8ZUl-U

    Feature-combination hybrid recommender systems for automated music playlist continuation

    Get PDF
    Music recommender systems have become a key technology to support the interaction of users with the increasingly larger music catalogs of on-line music streaming services, on-line music shops, and personal devices. An important task in music recommender systems is the automated continuation of music playlists, that enables the recommendation of music streams adapting to given (possibly short) listening sessions. Previous works have shown that applying collaborative filtering to collections of curated music playlists reveals underlying playlist-song co-occurrence patterns that are useful to predict playlist continuations. However, most music collections exhibit a pronounced long-tailed distribution. The majority of songs occur only in few playlists and, as a consequence, they are poorly represented by collaborative filtering. We introduce two feature-combination hybrid recommender systems that extend collaborative filtering by integrating the collaborative information encoded in curated music playlists with any type of song feature vector representation. We conduct off-line experiments to assess the performance of the proposed systems to recover withheld playlist continuations, and we compare them to competitive pure and hybrid collaborative filtering baselines. The results of the experiments indicate that the introduced feature-combination hybrid recommender systems can more accurately predict fitting playlist continuations as a result of their improved representation of songs occurring in few playlists(VLID)328909
    • …
    corecore